Bonded Pavements

Tack to the Max NCAUPG

2/3/2010

Andrew Fox VP-Innovation

Bonded Pavement Definition

- A bonded pavement consists of asphalt overlays applied over a uniform, undisturbed and uncontaminated application of tack coat
- The tack is an undiluted Polymer Modified Emulsion Membrane (PMEM) applied at a higher designed application rate than conventional tack coat for enhanced performance of the overall pavement

Outline

- Tack Why it is what it is!
- Does poor bonding affect pavements?
- Do we need bonded pavements?
 - Pavement structural design considerations
 - Simple experimental Demonstration
- Recent findings:
 - Effect of tack coat on pavement performance and distress mitigation
 - New tests and QC/QA possibilities
 - Specification recommendations
- Concluding remarks

Conventional Tack Coat

- Conventional Tack
 - Type SS-1 or CSS-1
 - Quantity 0.1 Gal/YD² (Diluted 50%)
 - Delivery Distributor
- Why? Aid Compaction and Avoid Delamination
 - Type Stability/Cost/Availability
 - Quantity Curing/Tracking/Cost-Benefit
 - Distributor Availability/Speed
- Results
 - Minimum Lift Thicknesses
 - For effective service life
 - Pavement design assumed full bonding
 - No in place performance specifications

Construction Considerations

- Challenges with tack coats when conventionally applied
 - Relatively low application rate and uniformity
 - Contamination and tracking

Source: http://pavementinteractive.org (Washington State Projects)

Road Science, LLC™

Does poor bonding affect pavements?

Slippage

Utah - 2009

How bonded are pavement layers (Cont.)?

Slippage (Cont.)

- Premature pavement failure within 1 year
 - Longitudinal cracking near the wheel path and rutting

Utah - 2008

- Premature pavement failure within 1 year (Cont.)
 - Longitudinal cracking in the wheel path and rutting

- Coring of new layer is a routine QC/QA activity to verify in-place density/calibrate nuclear density gage
- How often do cores break at the interface between layers?

Utah - 2008

Pavement Structural Considerations

Pavement Structural Considerations (Cont.)

- Pavement section for Mechanistic Empirical analysis
 - Effect of overlay interface (bonded or not bonded)
 - Calculation of deflection and strains using linear elastic program

ESAL's to Failure – Based on Asphalt Institute Rebound Equation

$$ESAL = \left(\frac{1.0363}{\delta_{rrd}}\right)^{4.1017}$$

ESAL: Equivalent Single Axle Load (Remaining Life)

d_{rrd}: Representative rebound deflection

ESAL's to Failure – Based on Asphalt Institute Rebound Equation

Overlay Not Bonded						
Overlay						
Thickness		Deflection	Life (EASL's)			
	2.5	0.02891	2,375,942			
Overlay Bonded						
Overlay						
_						
Thickness		Deflection	Life (EASL's)			
Thickness	0.5	Deflection 0.02917	Life (EASL's) 2,290,272			
Thickness	0.5		, ,			
Thickness		0.02917	2,290,272			
Thickness	1	0.02917 0.02652	2,290,272 3,384,896			

ESAL's to Failure – Based on Asphalt Institute Rebound Equation

- 0.54" bonded overlay is equivalent to 2.5" not bonded
- Pavement life is increased 3.9 times when 2.5" overlay is fully bonded versus not bonded

ESAL's to Failure – Based on Asphalt Institute Fatigue Equation

$$N_f = 0.0796(\varepsilon_t)^{-3.291}(E_1)^{-0.854}$$

N_f: Number of load repetition to result in 20% of area cracked (fatigue distress)

e_t: Tensile strain at the bottom of the HMA layer

 E_1 : HMA modulus

ESAL's to Failure – Based on Asphalt Institute Fatigue Equation

Overlay Not Bonded						
Overlay	Fatigue Analysis					
Thickness	εt	t # of Loads				
2.5		0.0004023	206,593			
Overlay Bonded						
Overlay	Fatigue Analysis					
Thickness	εt		# of Loads			
1		0.0004707	123,222			
1.5		0.0004256	171,651			
2		0.0003844	239,976			
2.5		0.0003477	333,876			

ESAL's to Failure – Based On Asphalt Institute Fatigue Equation

- 1.75" bonded overlay is equivalent to 2.5" not bonded
 - Potential lift thickness reduction of 30%
- Pavement life is increased by 62% when 2.5" overlay is fully bonded versus not bonded

Do we need bonded layers?

Simple plywood experiment

- About 60 lb load (mini Michael Jackson "look")
- 11 sheets of plywood:48" x 8" x 11/32" each
- Measure deflection over 36" span
- Compare effect of full slip versus full bond between plywood sheets

Simple Plywood Experiment (Cont.)

- Deflection comparison
 - 21 times greater with full slip than with full bond!

Bonded Layer Field Performance Research

- Control sections constructed using conventional placement methods
- Comparative sections placed using Vogele SP-1800 or RoadTec SP-200 spray pavers over various applications of PMEM
 - 2007 Commercial DG-HMA placed at 2" thick
 - 2008 Commercial DG-HMA placed 1.5" thick
 - 2008 HMA placed at 1" and 1.25" thick
 - 2008 HMA placed at 1.75" thick
 - 2008 12.5 mm Superpave placed at 1.5" thick
 - 2009 DG-HMA placed at 1.5" thick
 - 2009 DG-HMA placed at 1.75" thick
 - 2009 12.5 mm Superpave placed at 1.5" thick

Bonded Layer Research Findings Improved Rutting Resistance

- Reduced rutting potential with dense graded HMA
 - Potential for rutting has been shown to decrease, not increase, when increasing shot rate -2" overlay project in 2007

Bonded Layer Research Findings Bond Strength

- Bond test
- Tensile vs shear
 - Strength
 - Energy

2008 12.5 mm 1.5" DG-HMA

50/50 SS1HP

Undiluted PMEM

Bonded Layer Research Findings Improved Cracking Resistance

 University of Florida found that PMEM tack in OGFC had increased fracture resistance

Improved cracking resistance

Reflective, fatigue, and top-down

2008 1.75" DG after 9 months				
Shot Rate (gal/sy)(res.)	Reflected cracks per 1000 meters			
0.03	24.8			
0.09	1.8			
0.12	0.0			

Bonded Layer Research Findings Improved Cracking Resistance (Cont.)

- Improved cracking resistance from fracture energy
- Field core results

2008 1.75" DG Field Core Fracture Energy					
Section #	Tack Coat Type	Application Rate, gal/yd2	Fracture Energy, J/m2		
1	50:50 Dilute CSS-1h	0.08	319		
7	PMEM	0.11	459 (44% increase)		

2000 1 757 DC Etald Care East 4---- East

Bonded layer Research Findings Reduced Permeability

Seals the existing pavement by increasing the PMEM

application rate

Hydraulic Permeability Test

Bonded Layer Research Findings Constructability

- Non-tracking application of tack coat
 - Construction process does not limit the amount of tack placed

- Easier compaction with less damage to mixture
 - Better joint compaction
 - Better density values compared to traditional tack

Bonded Layer Research Findings New Testing Oopportunities

- Laboratory protocols developed for composite systems
 - Unique concept for asphalt laboratories
 - Interaction effects of underlying layer, bonding layer, and new surface mix

- Additional performance related tests developed
- → Offers QC/QA opportunities

Construction Considerations

- Challenges with tack coats when conventionally applied
 - Relatively low application rate and uniformity
 - Contamination and tracking

Source: http://pavementinteractive.org (Washington State Projects)

Road Science, LLC™

Alternative To Conventional Track Coat Application Method

- More efficient delivery system for the tack coat
 - Tack evenly placed
 - Tack undisturbed by construction process
 - Enhanced tack materials
 - Polymer modified emulsion
 - Increased application rates
- Followed immediately by application of the asphalt layer

Spray Pavers

- Self-priming paver (on board emulsion tank)
- Capable of spraying the PMEM, applying the hot mix asphalt overlay and leveling the surface of the mat in one pass

Road – Tec SP200

Vogele SF1800

Summary – Bonded Pavement Benefits

Distress Mitigation

- Improved Compaction Joint Densities
- Increased Bond Strength Reduced risk of delamination, especially with thinner lifts
- Permeability effectively seals the pavement
- reduce risk of rutting
- Increase resistance to cracking

Economic Impacts

- Increased Pavement life through enhanced fatigue resistance
- Potential reduction in lift thickness with equivalent structural capacity

Thank you

• Questions

afox@roadsciencellc.com

512-695-5899

